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ABSTRACT
Cross-Domain Sequential Recommendation (CDSR) aims to predict
future interactions based on user’s historical sequential interac-
tions from multiple domains. Generally, a key challenge of CDSR
is how to mine precise cross-domain user preference based on
the intra-sequence and inter-sequence item interactions. Existing
works first learn single-domain user preference only with intra-
sequence item interactions, and then build a transferring module to
obtain cross-domain user preference. However, such a pipeline and
implicit solution can be severely limited by the bottleneck of the de-
signed transferring module, and ignores to consider inter-sequence
item relationships. In this paper, we propose C2DSR to tackle the
above problems to capture precise user preferences. The main idea
is to simultaneously leverage the intra- and inter- sequence item
relationships, and jointly learn the single- and cross- domain user
preferences. Specifically, we first utilize a graph neural network
to mine inter-sequence item collaborative relationship, and then
exploit sequential attentive encoder to capture intra-sequence item
sequential relationship. Based on them, we devise two different
sequential training objectives to obtain user single-domain and
cross-domain representations. Furthermore, we present a novel
contrastive cross-domain infomax objective to enhance the cor-
relation between single- and cross- domain user representations
by maximizing their mutual information. Additionally, we point
out a serious information leak issue in prior datasets. We correct
this issue and release the corrected datasets. Extensive experiments
demonstrate the effectiveness of our approach C2DSR.

CCS CONCEPTS
• Information systems → Recommender systems; • Comput-
ing methodologies → Neural networks.
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Figure 1: Illustration of user’s sequential interactions in
Movie and Book domains. Movie or book surrounded by
the same color reflects similar user preference, where the
green/red represent the “Romance”/“Fantasy” preferences.
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1 INTRODUCTION
In order to model the dynamic user preference, the sequential rec-
ommendation (SR), aiming at recommending the next item for a
user based on his/her past sequential interactions, has attracted a
surge of interest in many web applications such as Amazon and
YouTube. In the real world, however, users usually exhibit partial
(or incomplete) preference involved in a specific domain, making
the recommendation results practically biased on the observed
single-domain historical interactions.

To alleviate the above issue, cross-domain sequential recom-
mendation (CDSR) has been proposed, which attempts to improve
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multiple domain sequential recommendation performances simulta-
neously by leveraging rich information from other relative domains.
Figure 1 gives a toy example of a typical user with historical inter-
actions of two domains: Movie and Book domain. As shown in the
figure, the user recently watched the movie Lord Rings, and then
he/she appreciates the corresponding book Lord Rings as the follow-
ing interaction. Intuitively, the recommender system is unlikely to
recommend the book Lord Rings individually based on the observed
book interactions, since there are no explicitly similar interactions
reflecting the Lord Rings preference in the single Book domain. This
is because that the users’ historical interactions in each single do-
main may only reflect the partial preference, easily making the
recommender system biased on the incomplete (or single-domain)
preference. Fortunately, by taking an overview of the both domains,
we can derive the relatively complete (or cross-domain) preference
of the current user, namely ‘Romance’ and ‘Fantasy’ interests for
both Movie and Book domain, and the ‘Fantasy’ interests may pro-
vide positive clues to make right recommendation. Therefore, it is
necessary to capture the precise cross-domain user preference for
better unbiased recommendation.

To identify and transfer the valuable clues across domains, a
significant paradigm of CDSR research has been proposed by ex-
tending the single-domain sequential recommendation methods.
The pioneering work is 𝜋-net [28], which first generates single-
domain representation by modeling item interaction sequence in
each single domain, and then transfers the learned single-domain
representations into other domains with a gated transferring mod-
ule. To enhance the transferring module in 𝜋-net, MIFN [27] further
introduces an external knowledge graph transferring module to
guide the connection between different domain items.

Despite the promising improvements, the pipeline-style para-
digm learns single-domain user preference separately, which usu-
ally generates domain-biased user representations. Simply trans-
ferring the biased single-domain preference can be intractable to
describe precise cross-domain user preference, which would easily
lead to unstable and sub-optimal recommendation results. There-
fore, we argue that it is necessary to learn the single- and cross-
domain user preference in a joint way for unbiased information
transferring. More importantly, typical user interactions in different
domains usually exhibit related preferences, thus we further con-
sider the correlation between the single- and cross- domain
user preference. Besides, previous CDSR works [28, 37] only fo-
cus on modeling the intra-sequence item relationship to capture
the sequential pattern signal to obtain sequence representation (i.e,
user representation), but ignore the inter-sequence relationship of
items (as shown in Figure 2), which provides valuable collaborative
signal to generate better user representation. Therefore, we propose
to capture the intra- and inter- sequence item relationships
at same time for representation learning.

To implement the above idea, we propose a contrastive cross-
domain sequential recommendation model, termed as C2DSR. We
first utilize a graph neural network to mine inter-sequence item col-
laborative signal, and then exploit a sequential attentive encoder to
capture intra-sequence item sequential signal. Based on the graph
and attention modules, we introduce and optimize single- and cross-
domain next item prediction objectives to obtain single- and cross-

Figure 2: A toy illustration of item relationships. The green
boxes reflect the sequential pattern signal of intra-sequence
item relationships. The red boxes reflect the collaborative
signal of inter-sequence item relationships.

user representations. Furthermore, we develop a novel contrastive
infomax objective to encourage single- and cross- domain repre-
sentations to be relevant, which leverages the mutual information
maximization principle [14, 25] to enhance their correlation.

To validate the effectiveness of our method, we evaluate it on
the preprocessed Amazon [10] and HVIDEO [28] datasets against
previous CDSR works. However, we find that there exists a serious
mistake in the previous works’ experimental setting [7, 27, 28, 37].
Specifically, in their preprocessing procedure, they randomly se-
lect sequences as validation/test datasets which causes the infor-
mation leak issue in the evaluation procedure. Their reported
performance thereby is overestimated (since using future interac-
tion sequences to predict the past interactions). In our work, we
correct the information leak issue by utilizing the latest inter-
actions of users to generate validation/test datasets and conduct
experiments on our cleaned datasets.

Overall, our main contributions are summarized as follows:
• We propose a novel model C2DSR which models the intra-
and inter- sequence item relationships to obtain the single-
and cross- domain user representations simultaneously.

• We introduce a novel contrastive infomax objective to en-
courage the single- and cross- user representations to be
relevant by maximizing their mutual information.

• We correct the information leak issue on existing datasets,
which provides a fair comparison setting for future works.

• We conduct extensive experiments on the corrected CDSR
dataset, which demonstrates that our C2DSR achieves con-
sistent and significant improvements over previous state-of-
the-art baselines. Our source codes and corrected datasets
are available at Github1 for further comparisons.

1https://github.com/cjx96/C2DSR
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2 PROBLEM FORMULATION
In this work, we consider a general CDSR scenario, where each
interaction sequence involves two domains, namely domain 𝑋 and
domain 𝑌 . Let S denote the overall interaction sequence set, where
each instance (𝑆𝑋 , 𝑆𝑌 , 𝑆)𝑢 ∈ S belongs to a certain user 𝑢. For each
instance, the 𝑆𝑋 = [𝑥1, 𝑥2, . . . , 𝑥 |𝑆𝑋 |] and 𝑆𝑌 = [𝑦1, 𝑦2, . . . , 𝑦 |𝑆𝑌 |]
denote the corresponding single-domain interaction sequences, and
the 𝑆 = [𝑦1, 𝑥1, 𝑥2, . . . , 𝑦 |𝑆𝑌 |, . . . , 𝑥 |𝑆𝑋 |] denotes the cross-domain
interaction sequence by merging 𝑆𝑋 and 𝑆𝑌 in chronological order,
where each 𝑥 ∈ X and 𝑦 ∈ Y are the interacted items, and the
| · | denotes the total item number. Note that X and Y denote the
entire item set in domain𝑋 and domain 𝑌 , respectively. For simplic-
ity, we further introduce three directed item-item matrices A𝑋 ∈
{0, 1} |X |× |X |,A𝑌 ∈ {0, 1} |Y |× |Y |,A ∈ {0, 1} ( |X |+ |Y |)×( |X |+ |Y |)

to represent S , where A𝑋
𝑖 𝑗

= 1 if 𝑥 𝑗 is the one next item of 𝑥𝑖 , and
A𝑋
𝑖 𝑗

= 0 otherwise.
Given the observed interaction sequences (𝑆𝑋 , 𝑆𝑌 , 𝑆)𝑢 , the goal

of CDSR is to predict the next item:

argmax𝑥𝑖 ∈X P𝑋
(
𝑥𝑖 |𝑆𝑋 , 𝑆𝑌 , 𝑆

)
, if next item ∈ X

argmax𝑦 𝑗 ∈YP𝑌
(
𝑦 𝑗 |𝑆𝑋 , 𝑆𝑌 , 𝑆

)
, if next item ∈ Y

(1)

where P𝑋 (𝑥𝑖 |𝑆𝑋 , 𝑆𝑌 , 𝑆) ∈ R |X | and P𝑌 (𝑦 𝑗 |𝑆𝑋 , 𝑆𝑌 , 𝑆) ∈ R |Y | are
the probability of the candidate item in domain 𝑋 and 𝑌 , where
the highest one is selected as the next recommended item.

3 METHODOLOGY
In this section, we propose our model C2DSR, which captures and
transfers valuable information across domains by modeling single-
domain and cross-domain representations. There are three major
components of C2DSR: (1) Graphical and attentional encoder, which
includes an embedding layer, a graph neural network module, and
a self-attention module to generate a series of sequential represen-
tations (i.e., user representations) for each interaction sequence. (2)
Sequential training objective, which includes two training objec-
tives for single-domain and cross-domain interaction sequences to
obtain single-domain and cross-domain user representations. (3)
Contrastive infomax objective, which leverages the mutual infor-
mation maximization principle to enhance the correlation between
single-domain and cross-domain representations.

3.1 Graphical and Attentional Encoder
In this section, we introduce the graphical and attentive sequential
encoder to capture CDSR data, which contains an embedding layer,
a graph neural network module, and a self-attention module.

3.1.1 Embedding Initialization Layer. In the embedding mapping
stage, to obtain initialized item representations for three single-
and cross- item interaction sequences, we introduce three param-
eter matrices E𝑋 ∈ R |X |×𝑑 , E𝑌 ∈ R |Y |×𝑑 and E ∈ R( |X |+ |Y |)×𝑑 ,
respectively, where 𝑑 is the dimension of the embeddings. Besides,
to recognize the ordered information of sequence, we define a learn-
able parameter position embedding matrix T ∈ R𝑀×𝑑 to enhance
the input item embeddings for the self-attention module [5], where
𝑀 is the max length of the interaction sequence, e.g.,𝑀 = 30.

Figure 3: A toy example of sequential training objective for
CDSR. The red dotted lines indicate the next prediction item.

3.1.2 Graph Neural Network Module. As a promising way to model
the inter-sequence item relationship, we consider employing the
graph neural network [19] over all the sequences. Motivated by
recent studies [11, 43], we also remove the convolution matrix
multiplication and non-linear activation function to capture the co-
occurrence collaborative filtering signal better. Specifically, given
the binary directed item-item matrices A𝑋 ,A𝑌 ,A and initialized
embedding G𝑋

0 = E𝑋 ,G𝑌
0 = E𝑌 ,G0 = E, we have:

G𝑋
1 = Norm(A𝑋 )G𝑋

0 , G𝑌
1 = Norm(A𝑌 )G𝑌

0 , G1 = Norm(A)G0, (2)

where Norm(·) denote the row-normalized function,G𝑋
1 ,G

𝑌
1 ,G1 are

the convolutional outputs. By stacking 𝐿 layers, we could obtain a
series outputs {G𝑋

0 , . . . ,G
𝑋
𝐿
}, {G𝑌

0 , . . . ,G
𝑌
𝐿
}, {G0, . . . ,G𝐿}. To fully

capture graphical information across layers, we use a Mean(·) func-
tion to average them to fulfill item representations as:

G𝑋 = Mean(G𝑋
𝑙
) + E𝑋 ,G𝑌 = Mean(G𝑌

𝑙
) + E𝑌 ,G = Mean(G𝑙 ) + E. (3)

3.1.3 Self-Attention Module. To capture the intra-sequence item
relationship, we utilize the self-attention module to encode the
interaction sequences, since previous SR works prove the superior
effectiveness of attention mechanism [24, 36, 45] against other
sequential architectures such as GRU [13]. Similar to SASRec [17],
in a self-attention module, there are two types of sub-layers: (1) the
multi-head self-attention layer captures the complex intra-sequence
item dependency in an interaction sequence, (2) the point-wise
feed-forward layer endows a non-linearity projection to output
the final sequential representations. For brevity, we employ the
padding technique on the input sequences2, and then formulate
the overall encoding process (containing several feed-forward and

2We add a <pad> item to the corresponding positions to separate single-domain se-
quences 𝑆𝑋 and 𝑆𝑌 from 𝑆 . For example, 𝑆𝑋 = [<pad>, 𝑥1, 𝑥2, <pad>, 𝑥3 ], 𝑆𝑌 =

[𝑦1, <pad>, <pad>, 𝑦2, <pad>], 𝑆 = [𝑦1, 𝑥1, 𝑥2, 𝑦2, 𝑥3 ], where a constant zero vector
0 is used as the embedding for the <pad> item.
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self-attention layers) as:

𝑯𝑋 = AttEncoder𝑋 (𝑆𝑋 ,G𝑋 ), 𝑯𝑌 = AttEncoder𝑌 (𝑆𝑌 ,G𝑌 ),
𝑯 = AttEncoder(𝑆,G),

(4)

where 𝑯𝑋 ∈ R |𝑆 |×𝑑 ,𝑯𝑌 ∈ R |𝑆 |×𝑑 ,𝑯 ∈ R |𝑆 |×𝑑 are sequential
outputs, and we adopt several AttEncoder parameters to encode
different interaction sequence 𝑆𝑋 , 𝑆𝑌 and 𝑆 for better adaptation.

3.2 Sequential Training Objective
Building upon the generated sequential outputs 𝑯𝑋 ,𝑯𝑌 ,𝑯 , in this
section, we employ two sequential objectives to optimize them to
act as single-domain and cross-domain representations (in Figure 3).

3.2.1 Single-Domain Item Prediction. For the single-domain item
prediction, as applied in many sequential recommendation ap-
proaches [13, 17, 39], the most common strategy is to train the
model to recommend the next item based on the observed sequence
directly. Taking the domain 𝑋 as an example, given single-domain
padding interaction sequence 𝑆𝑋 = [<pad>, 𝑥1, 𝑥2, <pad>, . . . , 𝑥𝑡 ],
and its expected next item 𝑥𝑡+1. We adopt the commonly used
training strategy to optimize our encoder as follows:

L𝑋
single =

∑︁
𝑆𝑋 ∈S

∑︁
𝑡

L𝑋
single (𝑆

𝑋 , 𝑡 )

L𝑋
single (𝑆

𝑋 , 𝑡 ) = − logP𝑋single (𝑥𝑡+1 | [<pad>, 𝑥1, 𝑥2, <pad>, . . . , 𝑥𝑡 ]),
(5)

where the probability P𝑋single (𝑥𝑡+1 | [<pad>, 𝑥1, 𝑥2, <pad>, . . . , 𝑥𝑡 ]) is
designed to be proportional to the similarity between all the items
𝑥 ∈ X and the given sequence in the vector space. Based on the
learned representations 𝑯𝑋 and 𝑯 , we calculate single-𝑋 -domain
prediction probability P𝑋single (·) as follows (similarly for domain 𝑌 ):

P𝑋single (𝑥𝑡+1 | [. . . , 𝑥𝑡 ]) = Softmax
(
𝒉𝑋𝑡 W𝑋 + 𝒉𝑡W𝑋

)
𝑥𝑡+1 (6)

where the the 𝒉𝑋𝑡 ∈ R1×𝑑 ,𝒉𝑡 ∈ R1×𝑑 are sequential representations
at position 𝑡 ,W𝑋 ∈ R𝑑×|X | is the learnable parameter matrix for
prediction. Specifically, Softmax

(
𝒉𝑋𝑡 W

𝑋 +𝒉𝑡W𝑋
)
∈ R |X | are non-

negative prediction probabilities for all items 𝑥 ∈ X , and its sum
is 1. We select the corresponding probability of 𝑥𝑡+1 from it as our
final prediction score. Note that those formulations (in Eq.(5-6))
also holds for single-𝑌 -domain as L𝑌

single.
In particular, this training strategy could achieve promising

results in a single-domain scenario, but it is hard to model the
cross-domain interaction sequence. For example, suppose that we
merge the two single-domain sequences to obtain the cross-domain
item sequence “[ Movie, Movie, Movie, Movie] → Book”. Since
the observed items are always Movie type, the above training
strategy would minimize all Book type probabilities by optimiz-
ing Softmax(·) ∈ R |X |+ |Y | , even if some Book items show strong
relevance with the latest Movie items, which may limit the model
effectiveness. This observation motivates us to devise a more bal-
anced training strategy for cross-domain interaction sequences.

3.2.2 Cross-Domain Item Prediction. In a cross-domain interaction
sequence, a user usually shows diverse preferences, and the pref-
erence in one domain may impact the following interactions in
another domain (e.g., watching the movie Lord Rings may lead to
reading the book Lord Rings). Further, different domains contain

False

True

True

False

𝒟!

𝒟"

𝒐single'

𝒐single(

𝒐)*+,,'

𝒐)*+,,(

𝒐")*+,,(

𝒐")*+,,'

Figure 4: Illustration of our contrastive infomax. The hollow
green/blue circles denote random items in domain 𝑋 /𝑌 .

different amount interactions, to avoid the prediction result dom-
inated by the data-rich domain, a balanced objective function is
required. That is to say, our model should also preserve the pre-
diction ability in the Book domain when it predicts next the Movie
item. Following this intuition and given next item 𝑥𝑡+1 or 𝑦𝑡+1, we
define the training strategy for cross-domain sequence 𝑆 as follows:

Lcross =
∑︁
𝑆∈S

∑︁
𝑡

Lcross (𝑆, 𝑡 ),

Lcross (𝑆, 𝑡 ) =
{
− log P𝑋cross (𝑥𝑡+1 | [𝑦1, 𝑥1, 𝑥2, . . . , 𝑥𝑡 ]),

− log P𝑌cross (𝑦𝑡+1 | [𝑦1, 𝑥1, 𝑥2, . . . , 𝑥𝑡 ]),

(7)

where we implement the prediction probability P𝑋cross (·), P𝑌cross (·)
by utilizing the learned representation 𝑯 as follows:

P𝑋cross (𝑥𝑡+1 | [𝑦1, 𝑥1, 𝑥2, . . . , 𝑥𝑡 ]) = Softmax
(
𝒉𝑡W𝑋

)
𝑥𝑡+1

,

P𝑌cross (𝑦𝑡+1 | [𝑦1, 𝑥1, 𝑥2, . . . , 𝑥𝑡 ]) = Softmax
(
𝒉𝑡W𝑌

)
𝑦𝑡+1

,
(8)

whereW𝑋 is the same parameter matrices in P𝑋single (·). In the above
Eq.(7), we decompose the loss function as two equally separate
parts for the domain 𝑋 and 𝑌 to optimize, which could preserve the
prediction ability for one domain even if the interaction sequence
contains many consecutive items in another domain.

Up to now, we have introduced the single- and cross- domain
sequential item prediction objective. As shown in the Figure 3, the
two type objectives have quite different purposes by leveraging
the learned representations. In detail, 𝑯𝑋 , 𝑯𝑌 are only used to
predict the next single-domain item, and 𝑯 aims to predict both
domains items. Therefore, by optimizing Eq.(5) and Eq.(7), 𝑯𝑋 ,
𝑯𝑌 are tended to encode single-domain user preference and 𝑯 is
encouraged to act as the cross-domain user preference.

3.3 Contrastive Infomax Objective
Since the single-domain representations 𝑯𝑋 , 𝑯𝑌 are learned from
sequence 𝑆𝑋 , 𝑆𝑌 independently, they tend to derive the partial
user’s preference in a single domain. As mentioned before, it can
be beneficial to incorporate the cross-domain preference to make
better recommendations. Hence, inspired by the infomax princi-
ple [3, 41], we develop a novel contrastive infomax objective to
improve correlation between the single-domain representations
and cross-domain representations.
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3.3.1 Single- and Cross- Domain Prototype Representations. To rep-
resent user’s holistic preferences in different interaction sequences
𝑆𝑋 , 𝑆𝑌 , 𝑆 , we generate the prototype representations [35] for them.
Our insight of the prototype representation is borrowed from the
prototypical network [38], which generates prototypes to represent
samples of the same type. We utilize the centroid of sequential
representations as to the prototype representation by a simple Mean
operation. For example, to obtain single-domain prototype repre-
sentations, the concrete procedures can be formulated as:

𝒐𝑋single = Mean(𝑯𝑋 ), 𝒐𝑌single = Mean(𝑯𝑌 ), (9)

where the 𝒐𝑋single ∈ R
1×𝑑 and 𝒐𝑌single ∈ R

1×𝑑 are the 𝑋 -domain and
𝑌 -domain prototype representations of 𝑆𝑋 and 𝑆𝑌 , respectively.

For the cross-domain interaction sequence 𝑆 , we generate two
cross-domain prototype representations by average corresponding
domain item representations:

𝒐𝑋cross = Mean( {𝒉𝑡 : 𝑆𝑡 ∈ X }), 𝒐𝑌cross = Mean( {𝒉𝑡 : 𝑆𝑡 ∈ Y }), (10)

where the 𝒐𝑋cross and 𝒐𝑌cross are the cross-domain prototype repre-
sentations for domain 𝑋 and 𝑌 , which encode the user’s holistic
preferences from both domains information.

3.3.2 Infomax Objective. After obtaining the prototype represen-
tations, we follow the intuition from DIM [14] and use a noise-
contrastive objective between the samples from joint (positive
examples) and the product of marginals (negative examples) to
formulate our contrastive infomax objective. To generate negative
samples from the positive cross-domain interaction sequence 𝑆 , we
devise two corruption functions Corrupt𝑋 and Corrupt𝑌 with the
negative sampling trick for domain𝑋 and 𝑌 respectively. The detail
of our corruption functions can be performed as:

𝑆𝑋 = Corrupt𝑋 (𝑆) = [𝑦1, 𝑥1, 𝑥2, 𝑦2, . . . ],

𝑆𝑌 = Corrupt𝑌 (𝑆) = [𝑦1, 𝑥1, 𝑥2, 𝑦2, . . . ],
(11)

where 𝑥 and 𝑦 are randomly selected items in corresponding do-
main, and 𝑆𝑋 and 𝑆𝑌 are the corrupted cross-domain interaction
sequences. By Eq.(4) and Eq.(10), we produce the prototype repre-
sentations �̂�𝑋cross and �̂�𝑌cross for 𝑆𝑋 and 𝑆𝑌 respectively.

Considering the user may have correlated preference between
two domains, we hope the prototype representations from two
domains are inherently relevant. Taking domain 𝑋 as an example,
we hope single-𝑋 -domain representation 𝒐𝑋single is relevant to 𝒐

𝑌
cross

with true 𝑋 domain items, but is irrelevant to �̂�𝑌cross with false 𝑋
domain items. Such a design not only enforces correlations between
two domains, but also makes cross-domain representations (e.g.,
𝒐𝑌cross) focusing on the real sequential interaction in the domain 𝑋 .
Thereby, our infomax objective L𝑋

disc is defined as (note that also
holds for domain 𝑌 and leads to L𝑌

disc):

L𝑋
disc =

∑︁
(𝑆𝑋 ,𝑆𝑌 ,𝑆 )𝑢∈S

−
(
logD𝑋 (𝒐𝑋single, 𝒐

𝑌
cross) +log

(
1 −D𝑋 (𝒐𝑋single, �̂�

𝑌
cross)

) )
(12)

where the D𝑋 can be regarded as a binary discriminator to mea-
sure single- and cross- domain prototype representation pairs by a
bilinear mapping function:

D𝑋 (𝒐𝑋single, 𝒐
𝑌
cross) = 𝜎

(
𝒐𝑋singleW

𝑋

disc (𝒐
𝑌
cross)⊤

)
, (13)

where W𝑋
disc ∈ R𝑑×𝑑 is a learnable parameter matrix, 𝜎 is the

Sigmoid(·) function. As discussed in previous works [3, 41], the
binary cross-entropy loss in Eq.(12) is an effective mutual infor-
mation (MI) estimator. It can maximize the MI between the single-
and cross- domain representations, and capture the correlation be-
tween them, since it measures the Jensen–Shannon (JS) divergence
between the joint distribution and the product of marginals. Fur-
ther, it follows the min-max objective as formalized in generative
adversarial network (GAN) [6], and the GAN objective is closely
related to JS divergence that can be used in MI estimation.

3.4 Model Training and Evaluation
The total loss function of C2DSR contains two types:

L = 𝜆 (Lcross + L𝑋
single + L𝑌

single)︸                              ︷︷                              ︸
Sequential training objective

+ (1 − 𝜆) (L𝑋
disc + L𝑌

disc)︸                       ︷︷                       ︸
Contrastive infomax objective

(14)

where 𝜆 is the harmonic factor. Our C2DSR can be optimized with
the mini-batch manner [18], and keeps the similar time complexity3
with other attention-architecture SR approaches.

In the evaluation stage, we utilize the corresponding single-
domain and cross-domain representations to make prediction. For
instance, given the latest representations 𝒉𝑋|𝑆 | and 𝒉 |𝑆 | , we select
the item with highest prediction score in domain 𝑋 as the recom-
mended next item (see Section 4.2.1):

argmax𝑥𝑖 ∈X P𝑋
(
𝑥𝑖 |𝑆𝑋 , 𝑆𝑌 , 𝑆

)
, where

P𝑋 (𝑥𝑖 |𝑆𝑋 , 𝑆𝑌 , 𝑆) = Softmax
(
𝒉𝑋|𝑆 |W

𝑋 + 𝒉 |𝑆 |W𝑋
)
𝑥𝑖
.

(15)

The prediction function also holds for domain 𝑌 , achieving the final
task goal in Eq. (1).

4 EXPERIMENTS
In this section, we evaluate the performance of C2DSR in com-
parison with various approaches. Moreover, we conduct detailed
studies about model variants to show the effectiveness of our model
components and analyze the impact of hyperparameters.

4.1 Datasets
As used in many cross-domain recommendation methods, we also
utilize the public available Amazon4 (E-commerce platform) and
HVIDEO5 (TV service platform) datasets to build the CDSR scenar-
ios. Following previous works [27, 28], we select the following six
domains to generate three CDSR scenarios for experiments: “Food-
Kitchen” (Amazon), “Movie-Book” (Amazon) and “Entertainment-
Education” (HVIDEO). For fair comparisons with previous meth-
ods, we first extract users who have interactions in both domains
and then filter out some users and items that the number of inter-
actions are fewer than 10. Furthermore, to satisfy the sequential
constraints, we preserve those cross-domain interaction sequences
containing at least 3 items from each domain within a period of
time (e.g., a month for the “Movie-Book” and a year for the “Food-
Kitchen”). In the training/validation/test partition, different from
3Empirically, in the same running environment, C2DSR and SASRec would cost around
54s and 40s per epoch on “Food-Kitchen” dataset for training on a Tesla T4 GPU. Details
are reported in implementation setting section.
4http://jmcauley.ucsd.edu/data/amazon/index_2014.html
5https://bitbucket.org/Catherine_Ma/pinet_sigir2019/src/master/HVIDEO/
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Table 1: Statistics of Three CDSR scenarios.

Scenarios #Items #Train #Valid #Test Avg.length

Food 29,207 34,117 2,722 2,747 9.91Kitchen 34,886 5,451 5,659
Movie 36,845 58,515 2,032 1,978 11.98Book 63,937 5,612 5,730

Entertainment 8,367 120,635 4,525 4,485 29.94Education 11,404 2,404 2,300

𝜋-Net [28], PSJNet [37] and MIFN [27] which randomly select sam-
ples to construct the training/validation/test datasets resulting in
the serious information leak problem. We analyze the informa-
tion leak problem by calculating those users’ interaction sequences
in validation/test sets that happened before than corresponding
users’ interaction sequences in training set (using future interaction
sequences to predict the past interactions), and we find about 60%
validation/test samples were leaked in MIFN preprocessed data.
In our work, to avoid this problem, the users’ lastest interaction
sequences are equally divided into the validation/test set, and the
other interaction sequences for training set. Statistics of our cor-
rected datasets in CDSR scenarios are summarized in Table 1.

4.2 Experimental Setting
4.2.1 Evaluation Protocol. Following previous works [17, 36, 45],
we also leverage the leave-one-out method to calculate the rec-
ommendation performance. To guarantee unbiased evaluation, we
follow Rendle’s literature [20] to calculate 1,000 scores for each
validation/test case (including 999 negative items and 1 positive
item). Then, we report the Top-K recommendation performance of
the 1,000 ranking list in terms of MRR (Mean Reciprocal Rank) [42],
NDCG@{5, 10} (Normalized Discounted Cumulative Gain) [16] and
HR@{1, 5, 10} (Hit Ratio).

4.2.2 Compared Baselines. In this section, we explain four
classes of baselines and their key operations for adaptation.

Traditional recommendation baselines: (1) BPRMF [31] is a well-
known method which devises a pairwise ranking loss function to
learn users and items representations. (2) ItemKNN [32] follows the
metric learning idea, which assumes those interacted items of a user
have higher similarity than the items not interacted yet. For those
methods, we ignore sequential constraints of user-item interaction
sequences and train them on mixed user-item pair datasets.

Cross-domain recommendation baselines: (1) NCF-MLP [12] is a
famous approach which learns representations by MLP networks.
To adapt two domains, we employ it to learn user/item representa-
tions by two separate base MLP networks with a shared initialized
user embedding layer. (2) CoNet [15] is a classic method of cross-
domain recommendation, which first models interactions of two
domains by two base networks, and then transfers information by
a cross-network between the two base networks. For them, we also
ignore sequential constraints of user-item interaction sequences.

Sequential recommendation baselines: (1) GRU4Rec [13] applies
GRU-achitecture to model interaction sequence for SR. (2) SAS-
Rec [17] is one of the state-of-the-art baselines for SR, which uses

the self-attention mechanism to model the interaction sequence. (3)
SR-GNN [44] is a pioneer work to apply graph neural network to
capture high-order relationships between items for SR. For those
methods, we preserve the sequential constraints and train them on
mixed interaction sequence datasets directly.

Cross-domain sequential recommendation baselines: (1) 𝜋-Net [28]
is the pioneering work for CDSR, which devises a novel gating
recurrent module to model and transfer knowledge across different
domains. (2) PSJNet [37] is extended from 𝜋-Net, which introduces
a parallel split-join scheme to transfer the different user intention
across domains. (3)MIFN [27] is recently proposed approach for
CDSR, which constructs a knowledge graph to guide the connection
between items from other domains to transfer information across
domains. For those methods, we use the self-attention module
as their sequence encoder.

4.2.3 Implementation and Hyperparameter Setting. For fair com-
parisons, we keep the same hyperparameter settings as MIFN. For
all methods, we first fix the embedding size 𝑑 and mini-batch batch
size 𝐵 as 256, the dropout rate is fixed as 0.3, the 𝐿2 regularizer
coefficient is selected from {0.0001, 0.00005, 0.00001}, the learning
rate is selected from {0.001, 0.0005, 0.0001}, the training epoch is
fixed as 100 to get the best result, the harmonic factor 𝜆 is selected
from 0.1 to 0.9 with step length 0.1, the deep of GNN 𝐿 is selected
from {1, 2, 3, 4}, and the Adam [18] optimizer is used to update all
parameters. Besides, as recommended in SASRec, we adapt two
single-head attention blocks and the learned positional embedding
in this work, and the channel number of 𝜋-net and PSJNet is 5 as
suggested in their literature. We select the best evaluation results
according to the highest MRR performance on the validation set.

4.3 Performance Comparisons
Table 2, 3 and 4 show the performance of compared methods on
the “Food-Kitchen”, “Movie-Book” and “Entertainment-Education”
CDSR scenarios. Note that we do not provide MIFN results on
“Entertainment-Education”, since we could not obtain the item
knowledge graph on the HVIDEO datasets. The best performance
is in boldface and the second is underlined. From them, we have
several insightful observations: (1) For the cross-domain recommen-
dation baselines, CoNet and NCF-MLP show better performance
than traditional baselines BPRMF and ItemKNN, which validates
that considering the difference between domains and transferring
such knowledge across domains could be helpful for better domain
adaptation. (2) For the SR baselines, GRU4Rec, SASRec and SR-GNN
show promising performances in the mixed sequential recommen-
dation datasets. Meanwhile, thosemethods significantly outperform
BPRMF, ItemKNN, NCF-MLP and CoNet. The reason is that cap-
turing the sequential characteristics of interactions could provide
valuable clues to make precise recommendations. Moreover, it is
obvious that SASRec and SR-GNN achieve robust performance than
GRU4Rec in the “Entertainment-Education” CDSR scenario. After
our statistics, we think the reason might be the sequence length,
this scenario has much longer sequence than others (as shown in
Table 1), and the self-attention encoder has stronger ability to model
the longer sequence than GRU. (3) For the CDSR baselines, 𝜋-Net,
PSJNet and MIFN reach superior performance to other baselines,
which indicates the cross-domain information is also beneficial to
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Table 2: Experimental results (%) on the Food-Kitchen scenario.

Methods
Food-domain recommendation Kitchen-domain recommendation

MRR NDCG HR MRR NDCG HR

@5 @10 @1 @5 @10 @5 @10 @1 @5 @10

BPRMF 4.10 3.55 4.03 2.42 4.51 5.95 2.01 1.45 1.85 0.73 2.18 3.43
ItemKNN 3.92 3.51 3.97 2.41 4.59 5.98 1.89 1.28 1.75 0.58 1.99 3.26

NCF-MLP 4.49 3.94 4.51 2.68 5.10 6.86 2.18 1.57 2.03 0.91 2.23 3.65
CoNet 4.13 3.61 4.14 2.42 4.77 6.35 2.17 1.50 2.11 0.95 2.07 3.71

GRU4Rec 5.79 5.48 6.13 3.63 7.12 9.11 3.06 2.55 3.10 1.61 3.50 5.22
SASRec 7.30 6.90 7.79 4.73 8.92 11.68 3.79 3.35 3.93 1.92 4.78 6.62
SR-GNN 7.84 7.58 8.35 5.03 9.88 12.27 4.01 3.47 4.13 2.07 4.80 6.84

𝜋 -Net 7.68 7.32 8.13 5.25 9.25 11.75 3.53 2.98 3.73 1.57 4.34 6.67
PSJNet 8.33 8.07 8.77 5.73 10.28 12.45 4.10 3.68 4.32 2.14 5.17 7.15
MIFN 8.55 8.28 9.01 6.02 10.43 12.71 4.09 3.57 4.29 2.21 4.86 7.08

C2DSR 8.91 8.65 9.71 5.84 11.24 14.54 4.65 4.16 4.94 2.51 5.74 8.18

Table 3: Experimental results (%) on the Movie-Book scenario.

Methods
Movie-domain recommendation Book-domain recommendation

MRR NDCG HR MRR NDCG HR

@5 @10 @1 @5 @10 @5 @10 @1 @5 @10

BPRMF 2.96 2.18 2.80 1.41 3.03 4.95 1.27 0.85 1.17 0.48 1.23 2.25
ItemKNN 2.92 2.17 2.88 1.26 3.13 5.35 1.26 0.86 1.10 0.48 1.25 2.00

NCF-MLP 3.05 2.26 2.96 1.41 3.13 5.30 1.43 1.06 1.26 0.62 1.39 2.18
CoNet 3.07 2.42 3.01 1.31 3.48 5.35 1.45 1.04 1.28 0.64 1.44 2.19

GRU4Rec 3.83 3.14 3.73 2.27 3.39 5.40 1.68 1.34 1.52 0.91 1.81 2.37
SASRec 3.79 3.23 3.69 2.37 3.99 5.20 1.81 1.41 1.71 0.95 1.83 2.75
SR-GNN 3.85 3.27 3.78 2.22 4.19 5.81 1.78 1.40 1.66 0.89 1.90 2.72

𝜋 -Net 4.16 3.72 4.17 2.52 4.75 6.11 2.17 1.84 2.03 1.43 2.25 2.84
PSJNet 4.63 4.06 4.76 2.78 5.30 7.53 2.44 2.07 2.35 1.66 2.58 3.28
MIFN 5.05 4.21 5.20 2.83 5.51 8.29 2.51 2.12 2.31 1.60 2.46 3.07

C2DSR 5.54 4.76 5.76 3.13 6.47 9.55 2.55 2.17 2.45 1.71 2.84 3.75

Table 4: Experimental results (%) on the Entertainment-Education scenario.

Methods
Entertainment-domain recommendation Education-domain recommendation

MRR NDCG HR MRR NDCG HR

@5 @10 @1 @5 @10 @5 @10 @1 @5 @10

BPRMF 45.97 47.38 50.11 35.98 57.65 66.08 46.50 47.51 49.27 38.69 54.86 60.26
ItemKNN 47.81 49.24 52.01 37.91 59.44 67.93 46.22 47.23 49.22 38.08 54.86 61.04

NCF-MLP 44.94 47.57 50.61 31.66 61.73 71.08 46.24 48.73 50.66 35.17 60.56 66.43
CoNet 45.76 48.31 51.63 32.30 62.45 72.68 47.83 50.11 52.22 36.60 61.65 68.04

GRU4Rec 45.61 47.48 51.46 32.73 61.06 73.35 51.35 53.88 56.21 39.95 66.13 73.21
SASRec 50.44 52.67 56.10 37.05 66.39 76.92 53.69 55.87 58.64 41.86 68.04 76.56
SR-GNN 50.67 52.77 56.47 37.43 66.30 77.17 54.74 56.73 59.69 43.08 68.43 77.47

𝜋 -Net 52.68 54.88 57.63 40.91 67.15 75.11 55.05 57.23 59.32 44.26 68.21 74.65
PSJNet 53.50 57.57 60.07 42.52 68.94 76.56 55.94 58.18 60.15 45.21 69.01 75.08

C2DSR 53.87 56.20 59.35 40.89 69.45 79.08 56.72 59.05 61.56 45.13 71.04 79.21

enhance recommendation performance. Besides, those methods
show distinct prediction performances, which indicates the transfer
strategy is vital to model the cross-domain user preference. (4) Our
C2DSR largely outperforms all baselines in many metrics, proving
the high effectiveness of our model in CDSR task. This fact indicates
that utilizing the inter- and intra- sequence item relationships to
model the single- and cross- domain user preference is important

for CDSR. Compared with previous works (𝜋-Net, PSJNet), it seems
that using an explicit way to guide the information transferring
is more useful than modeling implicitly transferring module di-
rectly, such as using the cross-domain item knowledge graph of
MIFN, our proposed sequential objectives and contrastive infomax
objective. (5) An interesting phenomenon is that the results on
“Entertainment-Education” are much higher than others. This is
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Figure 5: The predictive results of single-domain and cross-domain representations on Food-Kitchen.

because that users sometimes conduct repeat behaviors [30] in TV
platform, e.g., watching the same teleplay continuously during a
period of time, making it easy to make recommendation.

4.4 Discussion of Model Variants
This section investigates the effectiveness of our model components
and the extensibility of the proposed contrastive infomax objective.
We conduct several model variants, and the “Food-Kitchen” and
“Entertainment-Education” results of these model variants are pro-
vided in Table 5, respectively. Specifically, we use “++” to denote
that the model is incorporated with our graph neural network and
trained by our proposed cross-domain sequential training objective.
We use “∗” to denote that the model is trained without our proposed
infomax objective. Besides, C2DSR(GRU4Rec) adopts GRU4Rec as
the sequential encoder but with the same infomax objective.

From Table 5, we have several insightful observations: (1) The
“++” markedmethods show significant improvements over the origi-
nal methods, which demonstrates that modeling the inter-sequence
and intra-sequence item relations and training with our proposed
cross-domain objective is beneficial to fit the cross-domain interac-
tion sequence. (2) The “∗” marked methods consistently outperform
than the “++” counterparts, which reveals that jointly modeling the
single-domain and cross-domain user preferences is also critical
for CDSR task. (3) Compared with other attention based baselines,
the performance of model variant C2DSR(GRU4Rec) is also satisfy-
ing, which indicates that our proposed infomax objective can be
seamlessly incorporated into other sequential encoders to enhance
their effectiveness by capturing the correlation between single- and
cross- domain user representations.

4.5 Discussion of the Infomax Impact
In this section, to further validate that our presented contrastive
infomax objective is able to enhance the single-domain and cross-
domain representations, we conduct an analysis between C2DSR
and C2DSR∗ (trained without the infomax objective). As shown
in Figure 5, we only leverage the single-domain representation or
the cross-domain representation to test the predictive power in
each domain. From it, we can observe that: (1) The cross-domain
representation has more powerful predictive ability than the single-
domain representation, which indicates that it is vital to consider
other relevant domain to enhance each single-domain sequential
recommendation. (2) Compared with C2DSR∗, our proposed info-
max objective could enhance the prediction ability of single-domain

Table 5: Variants results on Food-Kitchen.

Model Variants Food-domain Kitchen-domain

MRR NDCG@10 HR@10 MRR NDCG@10 HR@10
GRU4Rec 5.79 6.13 9.11 3.06 3.10 5.22
GRU4Rec++ 6.92 7.18 10.10 3.21 3.28 5.63
C2DSR(GRU4Rec)∗ 6.83 7.26 10.72 3.57 3.68 6.10
C2DSR(GRU4Rec) 7.68 8.02 11.60 3.92 4.02 6.54
SASRec 7.30 7.79 11.68 3.79 3.93 6.62
SASRec++ 8.09 8.70 13.11 4.20 4.45 7.55
C2DSR∗ 8.73 9.36 13.66 4.41 4.55 7.70
C2DSR 8.91 9.71 14.54 4.65 4.94 8.18

and cross-domain representations simultaneously. We assume the
reason is that our contrastive infomax objective could enable the
single-domain representation to perceive the complete user prefer-
ences and encourage the cross-domain representation to provide
more general preferences in both domains.

4.6 Hyperparameter Analysis
This section investigates the parameter sensitivity of the harmonic
factor 𝜆 and graph neural network depth 𝐿.

For hyperparameter 𝜆, the Figure 6(a) and 6(b) show its “Food”
domain and “Kitchen” domain prediction performance in terms
of NDCG@10 and HR@10, respectively. According to it, we can
find that our model achieves consistent improvements than 𝜆 = 1.0
(This casemeans trainedwithout our contrastive infomax objective).
Specifically, our model shows superior and robust results when the
𝜆 is in the range [0.3, 0.7]. Even in the worst settings, our C2DSR
is still better than other baselines shown in Table 2. Besides, we
find that setting 𝜆 as a larger number could lead to faster speed for
training convergence. That is to say, 𝜆 = 0.7 might be a balanced
choice between the model effectiveness and model efficiency.

For hyperparameter 𝐿, the Figure 7(a) and 7(b) show its “Food”
domain and “Kitchen” domain prediction performance in terms
of NDCG@10 and HR@10, respectively. As shown in this Figure,
we report the recommendation results under the 𝐿 = {0, 1, 2, 3, 4},
note that the 𝐿 = 0 means ignoring the graph neural network mod-
ule. Generally, our model gives steady improvements in the cases
𝐿 = {1, 2} and shows the degeneration performance in the cases
𝐿 = {3, 4}. The reason might be that a deep graph neural network
easily causes the over-smoothing issue, which limits the model
effectiveness to capture collaborative signal. Therefore, choosing
smaller values of 𝐿 is a reasonable way.
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Figure 6: Result of harmonic factor 𝜆.

5 RELATEDWORKS
Contrastive Learning provides a promising paradigm to mea-
sure the dependency of input variables by calculating their mutual
information (MI). In past years, several classical works have pro-
posed to utilize contrastive learning for computer vision, neural
language processing, and graph data, such as DIM [14], CPC [40]
and DGI [41]. The DIM develops a contrastive objective to maxi-
mize the MI between local and global image representation. The
CPC is designed for structure sequence data, which maximizes the
MI between partial past representations and its summarized future
representations. The DGI further extended contrastive learning to
unstructured graph data, which maximizes the MI between local
sub-graph representations and corresponding global graph repre-
sentations. Recently, this idea to the sequential recommendation,
such as S3-Rec [45] proposes contrastive objectives to maximize
the mutual information of item context information in different
forms or granularities. In this work, we devise a novel contrastive
infomax objective to maximize the MI between the single- and
cross- domain representations for CDSR.
Cross-Domain Recommendation is a powerful technique to al-
leviate data sparsity issue in recommender system. Typical cross
domain recommendation models are extended from single-domain
recommendation models, such as the CMF [34], and M3Rec [1].
Those methods exploit the interactions from other auxiliary do-
mains to fulfill the user behaviours to make better recommendation
in target domain. Recently, the idea of transfer learning motivates
many efforts, such as CoNet [15], and BiTGCF [26]. Those methods
first utilize two base neural networks to model user-item inter-
actions in source and target domain separately, and then devise
distinct transfer modules to fuse them. On top of that, latest works
are focus on mining and transferring the domain-shared informa-
tion across domains, such as DisenCDR [2] and CDRIB [4].
Sequential Recommendation models the dynamic user pref-
erence to predict future items by latest historical interaction se-
quences. The pioneering works of SR are always based on the
Markov Chain assumption [8, 9, 33]. Those methods learn an item-
item co-occurrence relationship and utilize it to predict the next
item given the last interacted items. Recently, with the wave of
neural networks, various methods have been proposed to model
SR, such as recurrent networks (GRU4Rec [13], HRNN [29]), con-
volutional neural networks (Caser [39]), attention networks (SAS-
Rec [17], NARM [23]), and graph networks (SR-GNN [44]).
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Figure 7: Impact of GNN depth 𝐿.

Cross-Domain Sequential Recommendation aims to make bet-
ter recommendation for SR task that the items belong to several
domains. The pioneering work is the 𝜋-Net [28] and PSJNet [37],
those methods devise elaborate gating mechanisms to transfer the
single-domain information. Zhuang et al. [46] propose a cross-
domain novelty-seeking algorithm for better modeling an individ-
ual’s propensity for knowledge transfer across different domains.
Besides, some works construct interacted graph (or knowledge
graph) between different domain items to guide the information
transferring across domain, such as DA-GCN [7] and MIFN [27].
In industry, the SEMI [21] and RecGURU [22] are proposed for
cross-domain short-video recommendation (e.g., Taobao Video and
Tencent Video), by utilizing the additional multi-modal information
(e.g., text and key-frame information) or the adversarial Learning.
Compared with these methods, our C2DSR has important design
differences as follows: (1) we consider the single- and cross- domain
user preferences at same time, (2) we devise a novel contrastive
infomax objective to capture the cross-domain correlation.

6 CONCLUSION
This paper proposes a novel model C2DSR for cross-domain sequen-
tial recommendation. Particularly, our method includes a graphical
and attentional encoder to simultaneously leverage the intra- and
inter- sequence item relationships, and two sequential objectives
with a contrastive objective to jointly learn and enhance the single-
and cross- domain user preferences. Additionally, we correct the
information leak issue in previous works, and release the corrected
datasets for future works. Empirical results demonstrate the effec-
tiveness of C2DSR, reaching a new state-of-the-art performance.
Besides, we analyze the effectiveness of our model components and
the contrastive objective in detail. In the future, we will explore our
model in multi-domain setting and in continuous time space.
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